首页> 外文OA文献 >Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes
【2h】

Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes

机译:纳米级封装增强了同种异体移植物的存活和胰岛移植到糖尿病小鼠模型中的功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The success of islet transplantation as a treatment for type 1 diabetes is currently hampered by post-transplantation loss of functional islets through adverse immune and non-immune reactions. We aimed to test whether early islet loss can be limited and transplant survival improved by the application of conformal nano-coating layers to islets. Our novel coating protocol used alternate layers of phosphorylcholine-derived polysaccharides (chitosan or chondroitin-4-sulphate) and alginate as coating materials, with the binding based on electrostatic complexation. The in vitro function of encapsulated mouse islets was studied by analysing islet secretory function and cell viability. The in vivo function was evaluated using syngeneic and allogeneic transplantation in the streptozotocin-induced mouse model of diabetes. Nano-scale encapsulated islets retained appropriate islet secretory function in vitro and were less susceptible to complement- and cytokine-induced apoptosis than non-encapsulated control islets. In in vivo experiments using a syngeneic mouse transplantation model, no deleterious responses to the coatings were observed in host animals, and the encapsulated islet grafts were effective in reversing hyperglycaemia. Allo-transplantation of the nano-coated islets resulted in preserved islet function post-implantation in five of seven mice throughout the 1 month monitoring period. Nano-scale encapsulation offers localised immune protection for implanted islets, and may be able to limit early allograft loss and extend survival of transplanted islets. This versatile coating scheme has the potential to be integrated with tolerance induction mechanisms, thereby achieving long-term success in islet transplantation.
机译:胰岛移植作为1型糖尿病的治疗方法的成功目前受到免疫反应和非免疫反应不良导致的功能性胰岛移植后损失的困扰。我们旨在测试是否可以通过将保形纳米涂层应用于胰岛来限制早期胰岛的丢失和改善移植存活率。我们的新型涂层方案使用了磷酸胆碱衍生的多糖(壳聚糖或4-硫酸软骨素)和藻酸盐的交替层作为涂层材料,并基于静电络合进行了结合。通过分析胰岛的分泌功能和细胞活力,研究了小鼠胰岛的体外功能。在链脲佐菌素诱导的糖尿病小鼠模型中使用同基因和同种异体移植评估了体内功能。纳米级封装的胰岛在体外保留了适当的胰岛分泌功能,与非封装的对照胰岛相比,对补体和细胞因子诱导的凋亡的敏感性较低。在使用同系小鼠移植模型的体内实验中,在宿主动物中未观察到对涂层的有害反应,并且封装的胰岛移植物可有效逆转高血糖症。在整个1个月的监测期内,纳米涂层胰岛的同种异体移植导致了七只小鼠中的五只在植入后保留了胰岛功能。纳米级封装为植入的胰岛提供了局部免疫保护,并且可能能够限制早期同种异体移植的损失并延长移植的胰岛的存活期。这种多功能的涂层方案有可能与耐受性诱导机制整合在一起,从而在胰岛移植中取得长期成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号